Depend on it !

For U.S. and Canada

heating element

ISO 9001

STIEBEL ELTRON

Simply the Best 800-582-8423

E-mail: info@stiebel-eltron-usa.com www.stiebel-eltron-usa.com

DHC Series **Tankless Electric** Water Heaters

- Unlimited Supply of Hot Water
- Sleek Design **Saves Space**
- **Proven Reliability**
- **Major Energy** Savings

Ideal for all point-of-use water heating applications !

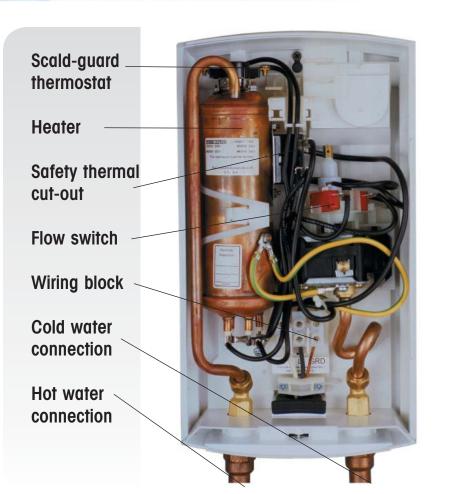
STIEBEL ELTRON DHC tankless electric water heaters are the ideal choice for all point-of-use applications in the following settings:

Commercial • Industrial • Institutional

- Office Buildings
- Stores
- Malls
- Warehouses
- Restaurants

- Gas Stations
- Schools
- Hotels/Motels
- Commercial Condominiums
- Manufacturing Facilities

Residential


- Bathroom Sinks
- Kitchen Sinks
- Laundry Areas
- Cabins/Cottages
- Low Flow Showers

The STIEBEL ELTRON DHC tankless water heaters are designed for installation at the point-of-use. The DHC heats water instantaneously as it flows through the unit. Standby heat-losses are completely eliminated. The heating elements are controlled by a flow switch. An exclusive scald-guard thermostat keeps the water temperature within safe limits at all times. Additionally, the DHC water heaters are equipped with a safety high-limit with manual reset. The rugged all copper design ensures many years of reliable service.

The models DHC 3-1, DHC 3-2 and DHC 4-2 are shipped with 0.5 GPM pressure compensating flow reducer/aerators that fit on most faucets. Flow controls and faucet aerators are highly recommended in conjunction with tankless water heaters. No pressure relief valve*, drains, or circulating pumps needed.

*Except in Massachusetts

Engineer's Specifications: The tankless electric water heater shall be equipped with a copper sheathed heating element housed in a copper cylinder. The flow switch that operates the heating element shall be of the mechanical pressure differential type. The unit shall be equipped with a safety high-limit switch with manual reset. In addition, the unit shall be equipped with a separate self-resetting thermostat designed to keep the water temperature at the tap below 130°F. An integral tamper-proof flow adjustment screw shall be provided for the installer so that water flow rates can easily be adjusted. The water connections shall be designed for 1/2" NPT female adapter. The housing shall be made of high impact polycarbonate plastic.

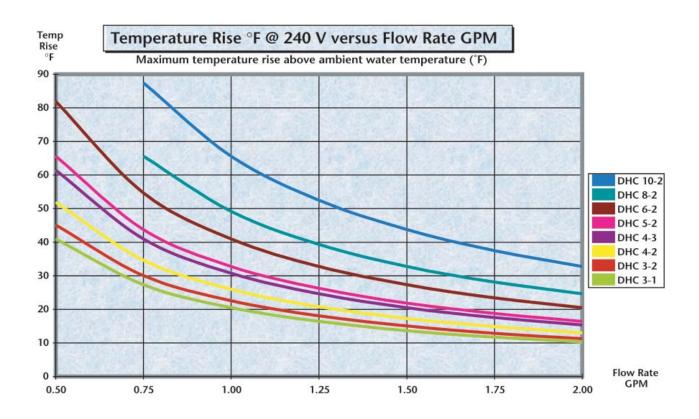
STIEBEL ELTRON

Tankless Electric Water Heater Sizing Chart

Flow GPM 3-1 3-2 4-2 4-3 5-2 6-2 8-2 Lav. Low 0.50 Low 0.50 Low 0.50 Low 0.50 Low 0.50 Low 0.50 Low 0.50 Low 0.62 8-2 Low 0.50 Low 0.50 Low 0.50 Low 0.62 0.75 Low-Med 0.75 Low 0.75 Low 0.75 Low 0.75 Med 1.00 Med 1.00 Low 1.00 Low 1.00 High 1.50 Low 1.00 Low 1.00 Low 1.00 Med 1.50 Low 1.00 Low 1.00 Low 1.00 Med 1.50 Low 1.00 Low 1.00 Low 1.00 Low 1.00 Income Income <th>DHC</th> <th>DHC</th> <th>DHC</th> <th>DHC</th> <th>DHC</th> <th>DHC</th> <th>DHC</th> <th>DHC</th> <th></th> <th></th> <th></th>	DHC	DHC	DHC	DHC	DHC	DHC	DHC	DHC			
Sink Low 0.50 Image: Construction of the state o	10-2	8-2	6-2	5-2	4-3	4-2	3-2	3-1	GPM	Flow	
Low-Med 0.75 Image: Constraint of the state of the s									0.50	Low	Lav.
Low-Med 0.75 Image: Construction of the second sec									0.50	Low	Sink
Med 1.00 Med 1.00 Med 1.00 Med Med 1.50 Med									0.75	Low-Med	
Med 1.00 Image: constraint of the stress of the stre									0.75	Low-Med	
High 1.50 Image: constraint of the second seco									1.00	Med	
High 1.50 Kitchen Low 1.00 Low 1.00 Image: Construction of the second sec									1.00	Med	
Kitchen Low 1.00 Image: Construction of the second s									1.50	High	
Sink Low 1.00 Image: Constraint of the second									1.50	High	
Sink Low 1.00 Image: Constraint of the second				1							
Med 1.50 Image: Constraint of the second secon									1.00	Low	
Med 1.50 2.00 Utility 1.50 - 2.00 Image: Color (Northern) Climate Image:										Low	Sink
Utility Sink 1.50 - 2.00 Cool (Northern) Climate Output O									1.50	Med	
Sink 1.50 - 2.00 Cool (Northern) Climate									1.50	Med	
Sink 1.50 - 2.00 Cool (Northern) Climate											
Cool (Northern) Climate											
WA WY BE HAVE BUILDED TO THE SECOND AND AND AND AND AND AND AND AND AND A				and the second						1.5	Sink
	!										

Warm (Southern) Climate

STIEBEL ELTRON


DHC Technical Data

Model		DHC 3-1	DHC 3-2		DHC 4-2		DHC 4-3	DHC 5-2		DHC 6-2		DHC 8-2		DHC	10-2
Phase		1	1 1		1	1	1	1	1	1	1	1	1	1	1
Voltage	V	120	208 240		208	240	277	208	240	208	240	208	240	208	240
Wattage	kW	3.0	2.5	3.3	2.9	3.8	4.5	3.6	4.8	4.5	6.0	5.4	7.2	7.2	9.6
Amperage	A	25	12	14	14	16	17	18	20	22	25	26	30	35	40
Min. required circuit breaker size	A	30	15	20	20	20	20	30	30	30	30	30	40	40	50
Recommended wire size	AWG COPPER	10	14	12	12	12	12	10	10	10	10	8	8	8	8
Min water flow to activate unit	GPM / Lmin	0.32 / 1.2	0.32	/ 1.2	0.42 / 1.6 0.42 / 1.6 0.42 / 1.6		/ 1.6	0.47 / 1.8		0.69 / 2.6		0.79 / 3.0			
Weight	lbs. / KG	4.6 / 2.1	5.3	/ 2.4	5.3 / 2.4 4.6 / 2.1 4.6 / 2.1		6 / 2.1		5.3 / 2.4		5.3 / 2.4				
Dimensions (Height/Width/Depth)	in. / cm	14 3/16(36.0) / 7 7/8(20.0) / 4 1/8(10.4)													
Nominal water volume	Gal / L	0.13 / 0.51													
Working pressure	PSI / bar	150 / 10													
Tested to pressure	PSI / bar	300 / 20													
Water connections		1/2" NPT													

* Suitable for supply with cold water

* Tankless water heaters are considered a non-continuous load

* Conductors should be sized to maintain a voltage drop of less than 3% under load

Limited Warranty (Excerpt): STIEBEL ELTRON, Inc. warrants to the original owner that the DHC Series Water Heater will be free from defects in workmanship and materials for a period of THREE YEARS from the date of purchase. Should any part(s) prove to be defective during this period, STIEBEL ELTRON, Inc. will be responsible for replacement of the defective part(s) only. STIEBEL ELTRON, Inc. is not responsible for labor charges.

Distributed by:

STIEBEL ELTRON, Inc.

17 West Street, West Hatfield, MA 01088 Phone: (413) 247-3380 • (800) 582-8423 Fax: (413) 247-3369 E-mail: info@stiebel-eltron-usa.com Please visit our web site at www.stiebel-eltron-usa.com